博客
关于我
spark1.6使用:读取本地外部数据,把RDD转化成DataFrame,保存为parquet格式,读取csv格式
阅读量:526 次
发布时间:2019-03-07

本文共 1336 字,大约阅读时间需要 4 分钟。

一、先开启Hadoop和spark

二、启动spark-shell

spark-shell --master local[2] --jars /usr/local/src/spark-1.6.1-bin-hadoop2.6/libext/com.mysql.jdbc.Driver.jar

1.读取spark目录下面的logs日志作为测试:

val alllog=sc.textFile("file:///usr/local/src/spark-1.6.1-bin-hadoop2.6/logs/*out*")

alllog.count 看看一共有347记录

2.转为为DataFrame

现在读取进来的是RDD格式,用map函数把每条记录转成一行

import org.apache.spark.sql.Rowval alllogRDD=alllog.map(x =>Row(x))import org.apache.spark.sql.types._val schemaString="line"val schema=StructType(schemaString.split(" ").map(fieldName =>StructField(fieldName,StringType,true)))val alllogDataFrame = sqlContext.createDataFrame(alllogRDD, schema)alllogDataFrame.printSchema  #打印schemaalllogDataFrame.show(false) #这里的false表示不省略,否则跟下午一样,会三点省略

到此为止,已经把RDD转化为DataFrame了。

三、把DataFrame转为为表用SQL查询

alllogDataFrame.registerTempTable("log")

sqlContext.sql("SELECT * FROM log").show()

到此就可以使用SQL了。

四、读取和存储外部数据源

1.读取json文件

 val df = sqlContext.read.format("json").load("file:///mnt/hgfs/vm/china.json")

df.printSchema

 df.select("*").write.format("parquet").mode("overwrite").save("file:///mnt/hgfs/vm/china.parquet") #保存为parquet格式

这里的mode可以有overwrite,append,ignore等模式,也可以不用。

这样就直接生产DataFrame数据,不用添加schema信息了。

对于parquet文件,还有更高级的使用方法,直接读取文件就行了

 val df = sqlContext.sql("SELECT * FROM parquet.`examples/src/main/resources/users.parquet`")

对于json里面有嵌套数组,想要展开成多行,可以在SQL中使用explode函

 

转载地址:http://osmjz.baihongyu.com/

你可能感兴趣的文章
MySQL 索引的面试题总结
查看>>
mysql 索引类型以及创建
查看>>
MySQL 索引连环问题,你能答对几个?
查看>>
Mysql 索引问题集锦
查看>>
Mysql 纵表转换为横表
查看>>
mysql 编译安装 window篇
查看>>
mysql 网络目录_联机目录数据库
查看>>
MySQL 聚簇索引&&二级索引&&辅助索引
查看>>
Mysql 脏页 脏读 脏数据
查看>>
mysql 自增id和UUID做主键性能分析,及最优方案
查看>>
Mysql 自定义函数
查看>>
mysql 行转列 列转行
查看>>
Mysql 表分区
查看>>
mysql 表的操作
查看>>
mysql 视图,视图更新删除
查看>>
MySQL 触发器
查看>>
mysql 让所有IP访问数据库
查看>>
mysql 记录的增删改查
查看>>
MySQL 设置数据库的隔离级别
查看>>
MySQL 证明为什么用limit时,offset很大会影响性能
查看>>